KeyError: 'SwinTransformer is not in the models registry'
See original GitHub issueI am using this model for custom training on my dataset in Colab. As I started training , got the error-
Traceback (most recent call last):
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 51, in build_from_cfg
return obj_cls(**args)
File "/content/drive/MyDrive/mmdetection/mmdet/models/detectors/cascade_rcnn.py", line 27, in __init__
init_cfg=init_cfg)
File "/content/drive/MyDrive/mmdetection/mmdet/models/detectors/two_stage.py", line 26, in __init__
self.backbone = build_backbone(backbone)
File "/content/drive/MyDrive/mmdetection/mmdet/models/builder.py", line 19, in build_backbone
return BACKBONES.build(cfg)
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 210, in build
return self.build_func(*args, **kwargs, registry=self)
File "/usr/local/lib/python3.7/dist-packages/mmcv/cnn/builder.py", line 26, in build_model_from_cfg
return build_from_cfg(cfg, registry, default_args)
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 44, in build_from_cfg
f'{obj_type} is not in the {registry.name} registry')
KeyError: 'SwinTransformer is not in the models registry'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "tools/train.py", line 187, in <module>
main()
File "tools/train.py", line 161, in main
test_cfg=cfg.get('test_cfg'))
File "/content/drive/MyDrive/mmdetection/mmdet/models/builder.py", line 58, in build_detector
cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 210, in build
return self.build_func(*args, **kwargs, registry=self)
File "/usr/local/lib/python3.7/dist-packages/mmcv/cnn/builder.py", line 26, in build_model_from_cfg
return build_from_cfg(cfg, registry, default_args)
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 54, in build_from_cfg
raise type(e)(f'{obj_cls.__name__}: {e}')
KeyError: "CascadeRCNN: 'SwinTransformer is not in the models registry'"
Here is my config file -
2021-05-13 12:30:00,473 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.10 (default, May 3 2021, 02:48:31) [GCC 7.5.0]
CUDA available: True
GPU 0: Tesla P100-PCIE-16GB
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_11.0_bu.TC445_37.28845127_0
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.8.1+cu101
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.1, CUDNN_VERSION=7.6.3, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.9.1+cu101
OpenCV: 4.1.2
MMCV: 1.3.3
MMCV Compiler: GCC 7.5
MMCV CUDA Compiler: 11.0
MMDetection: 2.12.0+41bb93f
------------------------------------------------------------
2021-05-13 12:30:04,393 - mmdet - INFO - Distributed training: False
2021-05-13 12:30:08,323 - mmdet - INFO - Config:
model = dict(
type='CascadeRCNN',
pretrained='./moby_cascade_mask_rcnn_swin_tiny_patch4_window7_3x.pth',
backbone=dict(
type='SwinTransformer',
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.2,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
use_checkpoint=False),
neck=dict(
type='FPN',
in_channels=[96, 192, 384, 768],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0)),
roi_head=dict(
type='CascadeRoIHead',
num_stages=3,
stage_loss_weights=[1, 0.5, 0.25],
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
reg_decoded_bbox=True,
norm_cfg=dict(type='SyncBN', requires_grad=True),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.05, 0.05, 0.1, 0.1]),
reg_class_agnostic=False,
reg_decoded_bbox=True,
norm_cfg=dict(type='SyncBN', requires_grad=True),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.033, 0.033, 0.067, 0.067]),
reg_class_agnostic=False,
reg_decoded_bbox=True,
norm_cfg=dict(type='SyncBN', requires_grad=True),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=10.0))
],
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_per_img=2000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)
]),
test_cfg=dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
dataset_type = 'COCODataset'
data_root = '/content/drive/MyDrive/layout/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='AutoAugment',
policies=[[{
'type':
'Resize',
'img_scale': [(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
'multiscale_mode':
'value',
'keep_ratio':
True
}],
[{
'type': 'Resize',
'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
'multiscale_mode': 'value',
'keep_ratio': True
}, {
'type': 'RandomCrop',
'crop_type': 'absolute_range',
'crop_size': (384, 600),
'allow_negative_crop': True
}, {
'type':
'Resize',
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
'multiscale_mode':
'value',
'override':
True,
'keep_ratio':
True
}]]),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='COCODataset',
ann_file='/content/drive/MyDrive/layout/train.json',
img_prefix='/content/drive/MyDrive/layout/train/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='AutoAugment',
policies=[[{
'type':
'Resize',
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
'multiscale_mode':
'value',
'keep_ratio':
True
}],
[{
'type': 'Resize',
'img_scale': [(400, 1333), (500, 1333),
(600, 1333)],
'multiscale_mode': 'value',
'keep_ratio': True
}, {
'type': 'RandomCrop',
'crop_type': 'absolute_range',
'crop_size': (384, 600),
'allow_negative_crop': True
}, {
'type':
'Resize',
'img_scale': [(480, 1333), (512, 1333),
(544, 1333), (576, 1333),
(608, 1333), (640, 1333),
(672, 1333), (704, 1333),
(736, 1333), (768, 1333),
(800, 1333)],
'multiscale_mode':
'value',
'override':
True,
'keep_ratio':
True
}]]),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]),
val=dict(
type='COCODataset',
ann_file='/content/drive/MyDrive/layout/valid.json',
img_prefix='/content/drive/MyDrive/layout/valid/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='COCODataset',
ann_file='/content/drive/MyDrive/layout/valid.json',
img_prefix='/content/drive/MyDrive/layout/valid/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(metric=['bbox', 'segm'])
optimizer = dict(
type='AdamW',
lr=0.0001,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_cfg=dict(
custom_keys=dict(
absolute_pos_embed=dict(decay_mult=0.0),
relative_position_bias_table=dict(decay_mult=0.0),
norm=dict(decay_mult=0.0))))
optimizer_config = dict(
grad_clip=None,
type='DistOptimizerHook',
update_interval=1,
coalesce=True,
bucket_size_mb=-1,
use_fp16=True)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[27, 33])
runner = dict(type='EpochBasedRunnerAmp', max_epochs=36)
checkpoint_config = dict(interval=5)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = '/content/drive/MyDrive/Swin-Transformer-Object-Detection/moby_cascade_mask_rcnn_swin_tiny_patch4_window7_3x.pth'
resume_from = None
workflow = [('train', 1)]
fp16 = None
work_dir = './work_dirs/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco'
gpu_ids = range(0, 1)
Issue Analytics
- State:
- Created 2 years ago
- Comments:18
Top Results From Across the Web
KeyError: "Recognizer3D: 'SwinTransformer3D is not in the ...
I met the same problem: "KeyError: "Recognizer3D: 'SwinTransformer3D is not in the models registry'"", when i try tools/test.py.
Read more >Swin Transformer is not in the backbone registry'解决方法
后来找了一个类似的报错解决办法,试了一下,就成功解决了,可以运行了。 (75条消息) Python——报错解决: KeyError: 'XXXX is not in the models registry' ...
Read more >Changelog — MMDetection 2.26.0 documentation
Release Swin Transformer pre-trained models (#6100) ... other OpenMMLab projects, MMDetection migrates to inherit the model registry created in MMCV (#760).
Read more >Problem encountered in MMDetection. KeyError
I tried to train my model with MMdetection, however, error like "KeyError: 'mask_detectionDataset is not in the dataset registry'" keep ...
Read more >mmdet Changelog - pyup.io
Release Swin Transformer pre-trained models (6100) ... other OpenMMLab projects, MMDetection migrates to inherit the model registry created in MMCV (760).
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
I think the most recent commits broke something. I was getting this error too and fixed it by using an older version of this repo (from April). Try cloning and using this version instead:
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/tree/02baa301774b455fe8e57ef9dc0fc32ef2ba2bb6
this solved my problem. using google colab: