"sc.pp.neighbors" kills kernel
See original GitHub issueAt the stage of finding neighbors, my jupyter kept showing this error:

the error:
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
And it killed the kernel entirely.
I try to make this work by running this in Linux but it got killed again.

Below is my basic workflow:
def pp(adata):
sc.pp.filter_cells(adata, min_genes=200) #get rid of cells with fewer than 200 genes
sc.pp.filter_genes(adata, min_cells=3) #get rid of genes that are found in fewer than 3 cells
adata.var['mt'] = adata.var_names.str.startswith('MT-') # annotate the group of mitochondrial genes as 'mt'
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)
upper_lim = np.quantile(adata.obs.n_genes_by_counts.values, .98)
lower_lim = np.quantile(adata.obs.n_genes_by_counts.values, .02)
adata = adata[(adata.obs.n_genes_by_counts < upper_lim) & (adata.obs.n_genes_by_counts > lower_lim)]
adata = adata[adata.obs.pct_counts_mt < 25]
sc.pp.normalize_total(adata, target_sum=1e4) #normalize every cell to 10,000 UMI
sc.pp.log1p(adata) #change to log counts
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5) #these are default values
adata.raw = adata #save raw data before processing values and further filtering
adata = adata[:, adata.var.highly_variable] #filter highly variable
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt']) #Regress out effects of total counts per cell and the percentage of mitochondrial genes expressed
sc.pp.scale(adata, max_value=10) #scale each gene to unit variance
sc.tl.pca(adata, svd_solver='arpack')
sc.pp.neighbors(adata, n_neighbors=10, n_pcs=20)
sc.tl.umap(adata)
return adata
adata = sc.read_csv("./myfile.csv", first_column_names=True)
adata = pp(adata)
My computer is Mac book Intel i5.
Thanks!
Versions
anndata 0.8.0 scanpy 1.9.1
OpenSSL 22.0.0 PIL 9.2.0 PyObjCTools NA absl NA appnope 0.1.2 astunparse 1.6.3 attr 21.4.0 backcall 0.2.0 bcrypt 3.2.0 beta_ufunc NA binom_ufunc NA boto3 1.24.28 botocore 1.27.28 bottleneck 1.3.5 brotli NA certifi 2022.09.24 cffi 1.15.1 chardet 4.0.0 charset_normalizer 2.0.4 chex 0.1.5 cloudpickle 2.0.0 colorama 0.4.5 contextlib2 NA cryptography 37.0.1 cycler 0.10.0 cython_runtime NA cytoolz 0.11.0 dask 2022.7.0 dateutil 2.8.2 debugpy 1.5.1 decorator 5.1.1 defusedxml 0.7.1 deprecate 0.3.2 dill 0.3.4 docrep 0.3.2 entrypoints 0.4 etils 0.8.0 flax 0.6.1 fsspec 2022.7.1 google NA graphviz 0.20 h5py 3.7.0 idna 3.4 igraph 0.10.2 ipykernel 6.15.2 ipython_genutils 0.2.0 ipywidgets 7.6.5 jax 0.3.23 jaxlib 0.3.22 jedi 0.18.1 jinja2 2.11.3 jmespath 0.10.0 joblib 1.1.1 jupyter_server 1.18.1 kiwisolver 1.4.2 leidenalg 0.8.10 llvmlite 0.39.1 louvain 0.8.0 lz4 3.1.3 markupsafe 2.0.1 matplotlib 3.5.2 matplotlib_inline 0.1.6 ml_collections NA mpl_toolkits NA msgpack 1.0.3 mudata 0.2.0 multipledispatch 0.6.0 natsort 8.1.0 nbinom_ufunc NA numba 0.56.3 numexpr 2.8.3 numpy 1.22.4 numpyro 0.10.1 opt_einsum v3.3.0 optax 0.1.3 packaging 21.3 pandas 1.4.4 parso 0.8.3 pexpect 4.8.0 pickleshare 0.7.5 pkg_resources NA plotly 5.9.0 prompt_toolkit 3.0.20 psutil 5.9.0 ptyprocess 0.7.0 pydev_ipython NA pydevconsole NA pydevd 2.6.0 pydevd_concurrency_analyser NA pydevd_file_utils NA pydevd_plugins NA pydevd_tracing NA pygments 2.11.2 pyparsing 3.0.9 pyro 1.8.2 pytorch_lightning 1.7.7 pytz 2022.1 regex 2.5.116 requests 2.28.1 rich NA scipy 1.7.3 scvi 0.18.0 session_info 1.0.0 setuptools 63.4.1 simplejson 3.17.6 six 1.16.0 sklearn 1.1.2 snappy NA socks 1.7.1 sphinxcontrib NA storemagic NA tblib 1.7.0 tensorboard 2.9.1 texttable 1.6.4 threadpoolctl 2.2.0 tlz 0.11.0 toolz 0.11.2 torch 1.12.1 torchmetrics 0.10.0 torchvision 0.13.1 tornado 6.1 tqdm 4.64.1 traitlets 5.1.1 tree 0.1.7 typing_extensions NA urllib3 1.26.12 wcwidth 0.2.5 wrapt 1.14.1 yaml 6.0 zipp NA zmq 23.2.0 zope NA
IPython 7.31.1 jupyter_client 7.3.4 jupyter_core 4.11.1 jupyterlab 3.4.4 notebook 6.4.12
Python 3.9.12 (main, Jun 1 2022, 06:36:29) [Clang 12.0.0 ] macOS-10.16-x86_64-i386-64bit
Session information updated at 2022-10-22 15:12
Issue Analytics
- State:
- Created a year ago
- Comments:9 (4 by maintainers)
Top Results From Across the Web
Dead kernel when computing neighbours · Issue #198 - GitHub
pp.neighbors(adata) killed the kernel as well. It seems so far that anything related to computing neighbors kill kernel when using my own data ......
Read more >scanpy neighbors function: LLVM ERROR: Symbol not found
Whenever I use sc.pp.neighbors(adata) I get this message (without any error): ... use scanpy's bbknn function as an alternative, and my kernel died...
Read more >restarting kernel - You.com | The AI Search Engine You Control
Hi, I have met such a strange bug. The kernel always restarted when I ran sc.pp.neighbor after importing scvi package.
Read more >running fbprophet kills kernel in Python 3.7 notebook - IBM
I have a Python 3.7 notebook. I have installed fbprophet with the following command:!conda install -c conda-forge fbprophetI then add a data ...
Read more >Examining the influence of interpolation method, grid cell size ...
An illustration of kernel density estimation ... of crime (STAC) (Spring and Block, 1989), nearest neighbor hierarchical clustering.
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
I reinstalled the environment and solved the issue.
Has anyone found a solution for this? I run into segfault with the same message when trying to run
sc.pp.calculate_qc_metricson my M2. Latest clean installation. I have the core dump as well, but I don’t know how to get useful information from there.