Errors when using C++ API inference

See original GitHub issue

I don’t know what’s wrong with this computer?cuda or cudnn? Need to get your help.

[2022-07-22 09:47:45.731] [mmdeploy] [error] [trt_net.cpp:28] TRTNet: 3: [executionContext.cpp::nvinfer1::rt::ExecutionContext::setBindingDimensions::926] Error Code 3: API Usage Error (Parameter check failed at: executionContext.cpp::nvinfer1::rt::ExecutionContext::setBindingDimensions::926, condition: mOptimizationProfile >= 0 && mOptimizationProfile < mEngine.getNbOptimizationProfiles()

Issue Analytics

  • State:closed
  • Created a year ago
  • Comments:7

github_iconTop GitHub Comments

2reactions
RunningLeoncommented, Jul 22, 2022

@irexyc @lvhan028 Reproduced on my machine

error log with running demo/csrc/object_detection

[2022-07-22 17:00:14.587] [mmdeploy] [info] [model.cpp:95] Register 'DirectoryModel'
[2022-07-22 17:00:14.596] [mmdeploy] [info] [model.cpp:38] DirectoryModel successfully load model /home/PJLAB/maningsheng/projects/openmmlab/mmdeploy/work-dirs/mmdet/yolov3/trt-test
[2022-07-22 17:00:15.701] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.2.1
[2022-07-22 17:00:15.983] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: TensorRT was linked against cuDNN 8.2.1 but loaded cuDNN 8.0.5
[2022-07-22 17:00:15.985] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.2.1
[2022-07-22 17:00:15.986] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: TensorRT was linked against cuDNN 8.2.1 but loaded cuDNN 8.0.5
[2022-07-22 17:00:15.990] [mmdeploy] [error] [trt_net.cpp:28] TRTNet: 1: [graphContext.h::MyelinGraphContext::24] Error Code 1: Myelin (Compiled against cuDNN 11.3.0.0 but running against cuDNN 11.2.1.0.)
[2022-07-22 17:00:15.992] [mmdeploy] [error] [trt_net.cpp:28] TRTNet: 1: [graphContext.h::MyelinGraphContext::24] Error Code 1: Myelin (Compiled against cuDNN 11.3.0.0 but running against cuDNN 11.2.1.0.)
[2022-07-22 17:00:16.006] [mmdeploy] [error] [trt_net.cpp:28] TRTNet: 3: [executionContext.cpp::setBindingDimensions::924] Error Code 3: API Usage Error (Parameter check failed at: runtime/api/executionContext.cpp::setBindingDimensions::924, condition: mOptimizationProfile >= 0 && mOptimizationProfile < mEngine.getNbOptimizationProfiles()
)
terminate called after throwing an instance of 'system_error2::status_error<mmdeploy::StatusDomain>'
  what():  unknown (6) @ /home/PJLAB/maningsheng/projects/openmmlab/mmdeploy/csrc/mmdeploy/net/trt/trt_net.cpp:173
Aborted (core dumped)

env

2022-07-22 16:51:11,257 - mmdeploy - INFO - 

2022-07-22 16:51:11,257 - mmdeploy - INFO - **********Environmental information**********
2022-07-22 16:51:12,208 - mmdeploy - INFO - sys.platform: linux
2022-07-22 16:51:12,208 - mmdeploy - INFO - Python: 3.7.5 (default, Oct 25 2019, 15:51:11) [GCC 7.3.0]
2022-07-22 16:51:12,208 - mmdeploy - INFO - CUDA available: True
2022-07-22 16:51:12,208 - mmdeploy - INFO - GPU 0: NVIDIA GeForce RTX 2080
2022-07-22 16:51:12,208 - mmdeploy - INFO - CUDA_HOME: /usr/local/cuda
2022-07-22 16:51:12,208 - mmdeploy - INFO - NVCC: Build cuda_11.1.TC455_06.29069683_0
2022-07-22 16:51:12,208 - mmdeploy - INFO - GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
2022-07-22 16:51:12,208 - mmdeploy - INFO - PyTorch: 1.8.0
2022-07-22 16:51:12,208 - mmdeploy - INFO - PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.2-Product Build 20210312 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.0.5
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

2022-07-22 16:51:12,208 - mmdeploy - INFO - TorchVision: 0.9.0
2022-07-22 16:51:12,208 - mmdeploy - INFO - OpenCV: 4.5.2
2022-07-22 16:51:12,208 - mmdeploy - INFO - MMCV: 1.4.8
2022-07-22 16:51:12,208 - mmdeploy - INFO - MMCV Compiler: GCC 7.3
2022-07-22 16:51:12,208 - mmdeploy - INFO - MMCV CUDA Compiler: 11.1
2022-07-22 16:51:12,208 - mmdeploy - INFO - MMDeploy: 0.6.0+c20bb80
2022-07-22 16:51:12,208 - mmdeploy - INFO - 

2022-07-22 16:51:12,208 - mmdeploy - INFO - **********Backend information**********
2022-07-22 16:51:12,645 - mmdeploy - INFO - onnxruntime: 1.8.0	ops_is_avaliable : True
2022-07-22 16:51:12,663 - mmdeploy - INFO - tensorrt: 8.2.1.8	ops_is_avaliable : True
2022-07-22 16:51:12,678 - mmdeploy - INFO - ncnn: 1.0.20220722	ops_is_avaliable : True
2022-07-22 16:51:12,720 - mmdeploy - INFO - pplnn_is_avaliable: True
2022-07-22 16:51:12,733 - mmdeploy - INFO - openvino_is_avaliable: True
2022-07-22 16:51:12,733 - mmdeploy - INFO - 

2022-07-22 16:51:12,733 - mmdeploy - INFO - **********Codebase information**********
2022-07-22 16:51:14,761 - mmdeploy - INFO - mmdet:	2.25.0
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmseg:	0.26.0
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmcls:	0.23.0
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmocr:	None
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmedit:	0.12.0
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmdet3d:	1.0.0rc3
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmpose:	0.26.0
2022-07-22 16:51:14,762 - mmdeploy - INFO - mmrotate:	0.3.2

script with deploy.py

python tools/deploy.py \
configs/mmdet/detection/detection_tensorrt_dynamic-64x64-608x608.py \
../mmdetection/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py \
https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020-a2c3acb8.pth \
../mmdetection/demo/demo.jpg \
--work-dir ./work-dirs/mmdet/yolov3/trt-test \
--device cuda \
--dump-info \

script with test.py run successfully.

python tools/test.py
configs/mmdet/detection/detection_sdk_dynamic.py \
../mmdetection/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py \
--model ./work-dirs/mmdet/yolov3/trt-test \
--device cuda \
--metrics bbox \

script with object_detection failed

./build/install/example/build/object_detection \
cuda \
./work-dirs/mmdet/yolov3/trt-test \
../mmdetection/demo/demo.jpg
0reactions
RunningLeoncommented, Jul 27, 2022

The pytorch was installed with conda through conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch Reinstall pytorch with pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html works. Strongly suggest not to install cudatoolkit with conda if cuda&cudnn are already installed on the machine.

Read more comments on GitHub >

github_iconTop Results From Across the Web

APEx: Automated Inference of Error Specifications for C APIs
Using our approach, we generated 93 correct error specifications for API functions collected from 6 popular C libraries, with a pre- cision of...
Read more >
Tensorflow-Lite on NDK with C-API fails to provide output - no ...
Extracting the inference result with TfLiteTensorCopyToBuffer does not change the output array - it's still all zeros. Describe the expected ...
Read more >
Inference error with TensorFlow C++ on iOS: "Invalid argument
I am trying to run my model on iOS using TensorFlow's C++ API. The model is a SavedModel saved ...
Read more >
[OpenVino C API] inference engine error while reading network
Solved: Hi I have converted my ML model using a model optimizer. My project is developed in C language and my model will...
Read more >
Inferencing SDK Error Codes - Edge Impulse API
This occurs if you are using EI_C_LINKAGE to call to SDK from a C file. Some functions are not supported via C linkage....
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found